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Developing a nonparametric functional calibration framework for physics-based models 

Evan Chodora, W-13 

 

1. Introduction 

Due to the cost, complexity, or difficulty in solely carrying out experiments in the effort to better 
understand physical phenomenon, researchers and engineers often work towards the development 
of computer models to represent the systems under analysis. The importance of these models in 
accurately representing the systems that they are designed to emulate has become a focus in 
numerous fields, including medicine, energy, defense, and manufacturing.  

The goal of this effort to improve computer model representations has its foundation in 
determining the best values of the parameters that control the model output so that it most 
accurately matches the real-world response of the system. While many parameters remain fairly 
constant throughout the operational domain of the system, there are parameters that vary 
significantly under different control inputs. Parameters such as thermal conductivity changing with 
temperature or density changing with pressure can have considerable impacts on the measured 
output of a system. These functional variations may be known to the calibrator ahead of time due 
to a known mathematical or measured relationship and can then be implemented directly into the 
model. If the relationship is predominately linear, for example, the slope and intercept of the line 
can be calibrated as two separate parameters to represent that relationship. If the functional form 
of the relationship is unknown, however, this becomes difficult to incorporate. 

The aim of this work is to solve this difficulty and provide a framework for both determining which 
model parameters may have functional dependence and then calibrating the unknown functional 
responses of physics-based model parameters as smooth functions of the operational control 
inputs. 

2. Functional parameter sensitivity analysis 

One of the biggest challenges in functional calibration is deciding which of many parameters in a 
computer model may be functionally dependent on the control inputs. The additional 
computational cost over calibration where all the parameters are scalars makes the determination 
of which, if any, model parameters should be calibrated using nonparametric, functional 
techniques a necessity. 

One way to conduct this sensitivity analysis that is proposed in this work is to calibrate the model 
using scalar parameters over small portions of the domain on which dependence is expected and 
analyzing how the mean of the parameter posterior distributions vary for each portion of the 
domain. This staged process allows for the determination of which parameters need to vary more 
throughout the domain in order to best agree with experimental results. This approach uses 
Bayesian model calibration methods to determine the most likely values (the posterior 
distributions) for the model parameters through the integration of measured data and the computer 
model outputs (Higdon, Kennedy, Cavendish, Cafeo, & Ryne, 2004) (Williams, et al., 2006). 



Once the most likely values of the calibration parameters are determined, Equation (1) below 
represents the relative variation in the calibration parameter 𝜃" due to the change in the input 
domain range. 
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Where 𝜇"3  represents the posterior mean of 𝜃" calculated using domain range 𝑖, 𝑛 is the number of 
ranges the domain was separated into, and 𝜇̅" is the mean of all the calibrated values for 𝜃" used in 
the calculation of the variation to normalize the standard deviation. This value can then serve as a 
relative indicator as to how much the most likely value of 𝜃" is dependent on the control input 
range. 

2.1. Demonstration on an algebraic problem 

To demonstrate this approach, an algebraic problem is devised as an example that consists of three 
total parameters. Two of these parameters (𝜃7 and 𝜃8) are constant and one (𝜏) is functionally 
dependent on the input, 𝑥. The equation of the model is shown below in Equation (2).  

 𝑦 = 𝜃7𝑥8 + 𝜃8𝑥 + 𝜏 (2) 

The parameter nominal values correspond to 𝜃7 = 2.5, 𝜃8 = 3.0, and 𝜏 = 2√𝑥. Figure 1 below 
shows the output of this model as the value of the input is varied between 0 and 1.  

 

Figure 1. Output from the algebraic model problem as a function of the value of x. 

Based on the model, the input domain was broken up into three distinct ranges: [0.00, 0.30], [0.35, 
0.65], and [0.70, 1.00]. The model is then run over those input ranges to collect three vectors of 𝑦 
values corresponding to each range and representing the measured response of the system. 

Using the measured responses, three Bayesian calibration runs were carried out for each of the 
input ranges using the Dakota software developed by Sandia National Laboratories (Adams, et al., 
2014). Dakota integrates the QUESO (Quantification of Uncertainty for Estimation Simulation 
and Optimization) C++ library developed by the Center for Predictive Engineering and 
Computational Science at the University of Texas at Austin for Bayesian analysis (Estacio-Hiroms, 



Prudencio, Malaya, Vohra, & McDougall, 2016). The results for each run are shown in Table 1 
below with the mean and standard deviation of each model parameter. 

Table 1. Results from calibration over each input range 

Input Range 
𝜃7 𝜃8 𝜏 

𝜇̅ 𝜎 𝜇̅ 𝜎 𝜇̅ 𝜎 
1 2.384 1.398 2.607 0.752 0.891 0.399 
2 2.900 1.302 2.737 0.779 2.679 0.209 
3 3.553 1.070 3.602 0.284 2.934 0.050 

 

Using the data in Table 1, the relative variation for each parameter is calculated using Equation 
(1) and shown below in Figure 2. This plot shows that 𝜏 has over 2.5 times the relative variation 
compared to either of the constant parameters in the model. This provides a probable indication 
that this parameter may be suited to being treated as functionally dependent over the selected input 
domain. 

 

Figure 2. Relative variation of the three parameters due to calibration over three control input 
ranges. 

It is important to note, however, that the values of the calibrated parameters in this approach for 
sensitivity analysis are not necessarily important or accurate as they do not use information about 
the entire measured response range. This is especially true when one or more parameter is 
functionally dependent on the input domain and the parameters may compensate for each other 
based on their individual sensitivities over each region of the domain. 

2.2. Comparison to three scalar parameters 

To compare the relative variation approach between a model with a functional parameter to one 
with all constant parameters, the model is modified as shown in Equation (3). 

 𝑦 = 𝜃7𝑥8 + 𝜃8𝑥 + 𝜏√𝑥 (3) 



The parameter nominal values correspond to 𝜃7 = 2.5, 𝜃8 = 3.0, and 𝜏 = 2.0 allowing the same 
measured output response vectors to be used. The same Bayesian calibration method over the three 
input domains was repeated on the model in Equation (3) and the results are shown below in Table 
2. 

Table 2. Results from calibration over each input range with a scalar parameter model 

Input Range 
𝜃7 𝜃8 𝜏 

𝜇̅ 𝜎 𝜇̅ 𝜎 𝜇̅ 𝜎 
1 2.072 1.038 2.236 1.073 1.907 0.695 
2 2.381 1.027 2.681 0.809 2.154 0.624 
3 2.519 0.937 2.834 0.751 2.250 0.660 

 

Using the data in Table 2, the relative variation for each parameter is calculated using Equation 
(1) and shown below in Figure 3. The results of this calculation would appear to indicate there is 
not a strong reason to believe any of the three parameters would benefit from being treated as 
functionally dependent relative to the others. 

 

Figure 3. Relative variation of the three scalar parameters due to calibration over three control 
input ranges. 

3. Nonparametric calibration method 

Much of the work in the last two decades or so have traditionally considered calibration parameters 
as fixed, scalar values that are constant throughout the operational input domain of the model. The 
work of (Kennedy & O'Hagan, 2001), (Williams, et al., 2006), and (Higdon, Gattiker, Williams, 
& Rightley, 2008) combine computer output with experimental data to determine the posterior 
distribution of the parameters that, based often on the mode of these distributions, are then chosen 
as the calibrated values. 

Often, however, the best values for calibration parameters may be adjust as the value of the control 
inputs change (Atamturktur & Brown, 2015). These changing calibration parameters can then be 



modeled as functions of the control input values using a Gaussian process that accounts for the 
functional uncertainty of the relationship (Brown & Atamturktur, 2018).  

If a set of field measurements are made on a system at N different control input settings, the 
measured field data can be denoted as 𝑦3 = 𝑦(𝑥3), 𝑖 = 1,… , 𝑁. The computer model to represent 
this system can be represented as 𝜂(𝑥, 𝒕) using the control input 𝑥 and the vector of model 
parameters 𝒕.  

Thus, the following equation can be used to generate model output data corresponding to the 
measured field observations: 

  𝑦3 = 𝜂(𝑥3, 𝜽) + 𝜀3, 𝑖 = 1,… ,𝑁 (4) 

Where 𝜽 is the vector of parameters that allow the model to exactly match the field measurements 
(the “true” parameters) and 𝜀3 is a Gaussian normally distributed error term (with a variance 𝜆K 
that is also calibrated) for each control input to account for experimental measurement error. 

In order to handle the case when 𝜽 is a function of the control input, a Gaussian process model is 
used to represent the mapping between 𝑥 and 𝜃(𝑥). All of the inputs are scaled to a unit hypercube 
and a Gaussian process correlation function is chosen that varies smoothly over the inputs and can 
be infinitely differentiable. Equation (5) below shows the chosen correlation function: 
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Where 𝑑_ the size of the control input vector is, 𝜆T,3 are the unknowns controlling the GP precision, 
𝛾T,3 are the unknowns controlling the smoothness of the 𝜃(∙) sample paths, and 𝜇T,3 are the mean 
functions. This model is established once priors are placed on the GP hyperparameters. The 
smoothness parameter can be parameterized as 𝜌T,3 = 𝑒U\],*  and be assigned a Beta distribution 
prior of 𝜌T,3	~	𝐵𝑒𝑡𝑎(1, 𝑏T). The Beta parameter is chosen to place most density towards 1 in order 
to enforce a priori smoothness. Similarly, the precision parameter and error precision are assigned 
Gamma distribution priors of 𝜆T,3	~	𝐺𝑎(𝑎T, 𝑏T) and 𝜆K	~	𝐺𝑎M𝑎K, 𝑏KO and the parameters are 
chosen to again place most mass near 1 due to the fact that the calibration parameters are unit 
scaled. 

The Markov chain Monte Carlo algorithm is used to simulate draws from the posterior 
distributions of the parameters. During this process, 𝜌T  and 𝜃 are reparametrized on a log scale as 
𝜈 = log(− 𝑙𝑜𝑔(𝜌T)) and 𝜉 = log(− 𝑙𝑜𝑔(𝜃)), respectively, to remove the influence of the 
boundary constraints. 

The functional parameter, 𝜽(𝑥) is then sampled based on the current value of 𝜌T  in order to take 
advantage of the smoothness assumptions. That is, to draw from the distribution 
𝜽(𝑥)	|	𝜉, 𝜈, 𝜆T, 𝜆K, 𝑦	the Cholesky decomposition of the covariance matrix is found and a proposal 
draw is made as 𝜽∗(𝑥) = 	𝜽(𝑥) + 𝑐 ∙ 𝑩 ∙ chol(𝑅z) where 𝑩	~	𝑁(0, 𝑰) and 𝑐 is adaptive step size 
tuned during the burn-in iterations (and held constant during sampling) of the MCMC chain to 
maintain approximately 20-25% acceptance on the functional parameter and 40-50% acceptance 
on the constant parameters and 𝜌T . Sub-iterations are carried out to conduct additional draws and 



tuning of 𝜽(𝑥) for each total iteration of the remaining parameters. This is done to help improve 
the convergence of the functional parameter by taking more draws relative to the constant 
parameters and the GP hyperparameters. 

3.1. Demonstration on an algebraic problem 

The nonparametric calibration approach presented in this section is applied to the example 
algebraic problem from Section 2.1 after the sensitivity has revealed that 𝜏 should be treated as a 
functional parameter and 𝜃7 and 𝜃8 can be treated as constant parameters. Prior constraints of 
2.35 ≤ 𝜃7 ≤ 2.60, 2.8 ≤ 𝜃8 ≤ 3.3, and −0.5 ≤ 𝜏 ≤ 2.5 (a wide bounds to demonstrate the 
technique’s ability to reduce uncertainty of the functional relationship) are placed on the 
parameters. The calibration routine is then carried out using 50,000 burn-in iterations and 30,000 
sampling iterations, each with 15 sub-iterations on the 𝜏 vector. The posterior distributions of 𝜃7, 
𝜃8, and 𝜏 are shown below in Figure 4 and Figure 5. 

 

Figure 4. Calibrated function of τ over the domain x showing the pointwise posterior mean 
(black line) and one standard deviation bounds (grey region) compared to the true functional 

relationship (red dashed line). 

 

Figure 5. Posterior distributions of θ1 (left; nominal value of 2.5) and θ2 (right; nominal value of 
3.0) after the nonparametric calibration technique. 



Taking the mean values of 𝜃7 and 𝜃8 along with the 𝜏 vector based on the pointwise posterior 
means, the model is run and the resulting output is compared to the measured output. This 
comparison is shown below in Figure 6 and shows excellent agreement between the two responses 
throughout the entire control input domain. 

 

Figure 6. Plot of the model output using the posterior means of θ1, θ2, and τ compared to the 
actual measurements. 

4. Example finite element problem 

To demonstrate the nonparametric functional calibration method and functional sensitivity 
analysis on an actual physics problem, a finite element model was designed to simulate 
experimental measurements of a plate under tensile loading. The model was built such that the 
elastic modulus of the plate varies as a function of the plate temperature. This relationship between 
the elastic modulus and the temperature is assumed to be unknown to the model creator and is the 
functional relationship that the calibration method will seek to uncover about the material. 

4.1. Model development 

The finite element model is constructed using the Multiphysics Object-Oriented Simulation 
Environment (MOOSE) framework developed by Idaho National Laboratories (Gaston, Newman, 
Hansen, & Lebrun-Grandié, 2009). MOOSE provides a high-level interface to the PETSc 
nonlinear partial differential equation solver and the libMesh finite element library and is 
composed of several physics modules (tensor mechanics, heat conduction, contact, porous flow, 
and others) that can be coupled together as needed to solve complex problems. In addition, user-
built applications can leverage the physics modules of MOOSE with additional physics for specific 
applications, such as BISON for light water reactor nuclear fuel performance calculations 
(Williamson, et al., 2012) and MOLTRES for molten salt reactor simulation (Lindsay, Ridley, 
Rykhlevskii, & Huff, 2018). 

The specific model used in this example takes advantage of the tensor mechanics and heat 
conduction modules to represent the problem physics (Golchi, Bingham, Chipman, & Campbell, 
2015). The plate is represented by a 10 by 10 element 2D mesh with constant specific heat and 
thermal conductivity and a modulus of elasticity that is a function of the nodal temperature. The 



elasticity-temperature relationship of the material is shown below in Figure 7. The plate is then 
fixed on the left edge and a pressure loading of 2 MPa is applied to the right edge to place the plate 
in tension. In addition to the pressure loading applied to the edge of the plate, a 400K temperature 
gradient is generated over the part as shown below in Figure 8. 

 

Figure 7. The relationship between the plate material's modulus of elasticity and the material 
temperature. 

 

Figure 8. Illustration of the 400K temperature gradient across the plate. 

To simulate the experimental measurement of the plate, synthetic displacement measurements 
were generated using the model under the established boundary conditions and loading. Figure 9 
below shows a plot of the plate displacement and illustrates the discernable nonlinear nature of the 
curve due to the temperature dependence of the modulus of elasticity. The curve represents the 
experimental response that the finite element model should match after parameter calibration using 
the nonparametric calibration approach. 



 

Figure 9. Plot of the synthetic displacement measurements generated by the finite element model. 

4.2. Functional sensitivity analysis 

In order to apply the functional sensitivity analysis of Section 2, the control input was specified as 
the temperature at the right boundary condition of the plate. Three different control input domains 
are chosen: 400K, 600K, and 800K. An additional calibration parameter is specified as the 
boundary condition temperature on the left end of the plate (set to 300K in the generated 
experimental measurements). This parameter was chosen because it would be reasonable to 
suggest that it may be dependent on the opposite boundary condition temperature and may be 
difficult to measure depending on the experimental setup. After the control inputs and parameters 
were specified, three Bayesian calibration runs were carried out for each of the input domains 
again using Sandia’s Dakota software. The results are shown below in Table 3 and the relative 
variations are then calculated and shown in Figure 10. 

Table 3. Results from calibration over each input range with the MOOSE FE model 

Input Range Temperature Modulus 
𝜇̅ 𝜇̅ 

800K 270.477 1.293E+11 
600K 240.948 1.672E+11 
400K 268.649 1.946E+11 

 



 

Figure 10. Relative variation calculations for the MOOSE model parameters. 

Based on the results of this plot that the relative variation of the calibrated modulus of elasticity is 
over a 215% increase from the variation of the temperature boundary condition, it can be concluded 
that the modulus of elasticity would benefit much more from being treated as a functional 
parameter as was known to be the case. This is the parameter that will be used in the functional 
calibration approach presented in the following Section 4.3. 

4.3. Nonparametric functional calibration 

Once the finite element model has been created and the synthetic experimental data is available, 
the nonparametric calibration approach can be carried out on the computer simulation. In this 
problem, no assumptions were made about the functional dependence of the elasticity-temperature 
relationship (𝜏(𝑇)) other than maximum and minimum bounds over the function domain. The 
functional relationship was allowed to vary from a lower bound of 60 GPa to an upper bound of 
220 GPa throughout the temperature domain in order to demonstrate the capability of this 
technique in the reduction of a very wide prior uncertainty about a functional relationship. In 
practice, however, if additional prior information about the functional relationship is known, it can 
be added to better inform the Gaussian process priors. Constraint options may include bounds on 
specific regions of the domain, such as a specified y-intercept range at the beginning of the domain, 
or trend information, such as enforcement that the function maintains monotonicity (Golchi, 
Bingham, Chipman, & Campbell, 2015). Without these types of more informed priors, the initial 
𝜏 vector begins as an approximately horizontal line through the center of the domain at around 140 
GPa. 

Calibration was carried out on the MOOSE model using 800 burn-in iterations to refine the 
acceptance parameters and was followed 500 sampling iterations using constant acceptance 
parameters. During each iteration, 15 sub-iterations were conducted to make additional draws of 
the 𝜏 vector relative to the other parameters to help improve convergence of the posterior function. 
Figure 11 below show the posterior distribution of 𝜏(𝑇) with the calibrated relationship calculated 
as the pointwise mean of the vector with uncertainty bounds plotted as one standard deviation 
around the mean. The results show good agreement with the true relationship entirely contained 
within one standard deviation bounds. 



It is interesting to note that the wider uncertainty bounds at the higher temperature bound can be 
explained by the lack of experimental data of the displacement response at temperatures above 
700K. Additionally, at the lower temperature bounds the wider uncertainty is due to the relative 
insensitivity to temperature compared to the displacement occurring at the fixed end condition of 
the plate and the learned functional response deviates less from the initial value of 140 GPa than 
the true relationship. These points illustrate the importance understanding and applying 
informative priors on the functional relationship to ensure as accurate posterior results as possible 
over the entire control input domain. 

 

Figure 11. Posterior distribution of τ(x) with bounds of one standard deviation about the 
pointwise mean of the vector compared to the true material relationship. 

Based on the calibrated mean functional relationship in Figure 11, the model simulation output is 
shown below in Figure 12. The model is also run with the upper and lower standard deviation 
bounds of 𝜏 and shown as the grey bounds in the plot. The calibrated output shows quite good 
agreement with the experimental displacement response throughout the plate and shows that the 
functional relationship in Figure 11 is an adequate representation of true functional relationship of 
the plate material to ensure model displacement output accuracy. 



 

Figure 12. Plot of the displacement using the mean elasticity-temperature relationship compared 
to the synthetic experimental measurements with bounds based on the simulation results using 

the mean calibrated functional relationship plus and minus one standard deviation. 

4.4. Comparison to non-functional calibration 

As a way to verify the usefulness of this technique as compared to traditional scalar calibration, 
the calibration was repeated again to find the single most likely value of the material modulus of 
elasticity over the input domain. Again this calibration was run using Dakota and resulted in a 
posterior distribution for the modulus of elasticity with a mean value of 118.82 GPa. Figure 13 
below shows the output of the MOOSE model when run with this constant modulus of elasticity 
compared to the results from the calibrated functional relationship. It is clear from this plot the 
improvement in simulated displacement response that the functional calibration gains over the 
single value calibration that essentially finds a modulus to best-fit the displacement measurements 
of the plate. The RMS error of the model output with functional calibration is a 99.53% reduction 
compared to the single value case (1.081E-09 versus 2.317E-07 when normalized by the average 
displacement). This is a drastic improvement in the simulation error and an example where the 
nonparametric functional approach would be invaluable to improving model accuracy. 



 

Figure 13. Plot showing the comparison between the functional calibration results and single 
parameter calibration. 

5. Conclusions 

The nonparametric functional calibration approach presented as a part of this framework provides 
a powerful way to improve physics-based model responses to match observed measurements 
where parameters have functional dependence on either an aspect of the operating domain or 
control inputs. The code used in this work has been written to flexibly interface with physics-based 
simulation codes using Python (easily adaptable to many different problems by adapting the 
system call to run the specific simulation code) and offers the ability to easily add more (or remove 
all) constant parameters to the calibration process. The code is inherently written to handle user 
adjustable settings for iterations, 𝜃(𝑥) sub-iterations, and parameter prior bounds. It also is built 
to read external text files containing the experimental measurements and automatically generate 
many of the results plots presented in this paper for analysis.  

One area for future research in this work is in the formalizing of the sensitivity analysis method 
into a more quantitative indicator of parameter functional dependence. While visually it may be 
reasonable to determine which, if any, parameters would benefit from this approach, in practice it 
may be difficult to discern the results. Additionally, while in some problems (such as the algebraic 
problem in Section 2.1) it may be simple to determine which input is the independent control 
variable against which to conduct the analysis (there was only one), in the case of the finite element 
model, however, a single input (temperature) was chosen amongst many possible choices. This 
choice must be made through the use of expert opinion or the analysis can be repeated for every 
input that dependence is suspected. A method to expand upon this approach to determine which 
parameters are dependent and to what input inputs would make it much more applicable to a wide 
variety of complex engineering problems. 

Overall, this work provides a solid foundation for a nonparametric functional calibration 
framework for physics models that has demonstrated its success in calibrating a multi-physics 
finite element model with a relatively common type of functional parameter that is encountered in 



many engineering problems. The code is available to adapt easily to a wide range of simulation 
codes and additional, more informative prior constraints on the GP can be implemented into the 
base algorithm. 
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